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all gradients are reduced on CPE 0. Then, we use DMA to store ̃dKj and ̃dVj to 
DRAM on CPE 0.

Moreover, the computation in both forward pass and backward pass can over-
lap with asynchronous DMA. As shown in Fig.  5, once the matrix Q has been 
loaded into LDM, the computation in line 11 of Algorithm  2 can overlap with 
loading matrix O. In the backward pass algorithm, we find that line 12 needs 
matrix Q, line 17 needs matrix dO, line 20 needs matrix O, and line 22 needs 
matrix dQ. Therefore, these four matrices are loaded asynchronously in the same 
order. When line 22 finishes, we need to write dQ to DRAM, and the asynchro-
nous DMA store operation can also overlap with the computation in line 23.
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Fig. 4   Reduction of dV and dK using RMA on SW26010pro
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Fig. 5   Computation overlaps with asynchronous memory access
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