
For Review Only

First Author et al.: Shortened Title Within 45 Characters 7

Parallel Configurations

GEMM Shapes

Optimized SWattention

Optimized GEMMIntra-op Tiling

Number of Attention Heads

Profiling

Dependent Operators Independent Operators

PyTorch Frontend

Foundation Models

C++ Interface

Executable Kernels

Reordered Tiled Kernels

Inter-op Scheduling

Profiling

Optimal Tiling Optimal Scheduling Strategy

Tiling Strategies Scheduling Strategies

Computation Graph
Operators: GEMM, Attention,

Activation, Normalization, ...
Data Dependency

Kernel Tiling

Pad-free Tiling Tile-fusion Sequence Tiling

Kernel Scheduling

Persistent Kernel BFS KA OPT2

Kernel Scheduling

Persistent Kernel BFS KA OPT2

Task Queue

Fig.6. Framework overview of SwFormer.

(8, 8). This method ensures that the shapes of the sub-

matrices assigned to each CG align perfectly with the

requirements of the micro kernel, thereby eliminating

the need for padding. Compared with the previously

mentioned (2, 2) pad-free tiling method, SwFormer’s

fine-grained pad-free tiling strategy reduces the idle

rate. For instance, when using a tiling strategy of (4,4),

the execution of the GEMM kernel can be distributed

across three waves, and the theoretical device utiliza-

tion rate is 16
18 ≈ 88.9%. Furthermore, when the GEMM

kernel can be tiled with even larger tile sizes such as

(8, 8), the theoretical device utilization rate becomes

even higher, achieving 64
66 ≈ 97.0%.

However, dividing the GEMM kernel into exces-

sively fine-grained tiled kernels does not necessarily

bring optimal performance. Smaller tiled GEMM ker-

nels often lead to diminished performance, and more

execution waves introduce subsequent synchronization

overhead. To further enhance the performance of the

pad-free tiling method, we introduce a heuristic tile-

fusion strategy that fuses smaller tiled kernels into

larger ones while maintaining a roughly balanced work-

load among six CGs. As illustrated in Fig.7(b), when

(Mdiv, Ndiv) = (1, 16), 12 out of the original 16 GEMM

tiles can be fused into six larger GEMM tiles based on

(Mdiv, Ndiv) = (1, 8), while the remaining four GEMM

tiles retain their original (1, 16) configurations. As a

result, the number of execution waves is reduced from

three to two and larger GEMM kernels are processed in

the first wave, thereby enhancing overall performance.

Algorithm 1 Optimal GEMM Tiling Strategy Search
Algorithm for Foundation Models

Input: Foundation model m with certain parallel
configurations, Minimal shape for micro kernels
(Mmin, Nmin), GEMM Search space Div List

Output: List of optimal tiling strategies Tiling List
for each GEMM

1: Tiling List← empty list
2: for each GEMM of shape (M,N,K) in m do
3: timemin ←∞
4: optimal tiling ← (1, 1)
5: for each i ∈ Div List do
6: if M is divisible by Mmin × i then
7: for each j ∈ Div List do
8: if N is divisible by Nmin × j then
9: time← Profile(i, j, M , N , K)

10: if time < timemin then
11: timemin ← time
12: optimal tiling ← (i, j)
13: end if
14: end if
15: end for
16: end if
17: end for
18: Append optimal tiling to Tiling List
19: end for
20: return Tiling List

Given the diversity of tiling strategies and the

varying GEMM shapes resulting from different par-

allel configurations, we propose an offline profiling-

based method to identify the optimal tiling strategy

for GEMM kernels. As illustrated in Algorithm 1,

SwFormer first collects the shapes of all GEMM kernels

Page 7 of 18 Journal of Computer Science and Technology http://jcst.ict.ac.cn

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

